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Moment ratios for an urn model of sand compartmentalization
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Numerically solving a master equation for a recently introduced nonequilibrium urn model of sand com-
partmentalization, we show that the order-parameter moment ratios of the fourth and sixth order remain
constant along an exactly located line of critical points. Obtained values are in very good agreement with
values predicted by Beén and Zinn-Justin for the equilibrium Ising model above the critical dimension. At the
tricritical point, these ratios acquire values that also agree with a suitably extendeid Brel Zinn-Justin
approach.
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The concept of universality and scale invariance plays auracy of the location of the critical point, which is a serious
fundamental role in the theory of critical phenoméhf Itis  problem in the case of the Ising modéi;) are based on the
well known that at criticality the system is characterized bynumerical solution of a discrete master equation; @ngare
critical exponents. Calculation of these exponents for the dinot affected by stochastic fluctuations, as in Monte Carlo
mension of the systerd lower than the so-called critical Simulations. Moreover, we calculate these ratios at the tric-
dimensiond, is a highly nontrivial tasf2]. On the other ritical point, which is also present in our model, and show
hand, ford>d., the behavior of a given system is much that the obtained values are also in agreement with suitably
simpler, and critical exponents take mean-field values thagxtended calculations of BJ. Our urn model is defined by
are usually simple fractional numbers. dynamical mean-field-like rules. Although some steady-state

However, not everything is clearly understood above thecharacteristics of this model can be found exactly, their prob-
critical dimension. One example is the Ising mod#l£4),  ability distributions, contrary to equilibrium systems, are un-
where, despite intensive research, discrepancies betwe&Rown and can only be determined numerically. Conse-
analytical[3] and numerica[4] calculations still persist. Of quently, the canonical formalism used in the equilibrium
particular interest are the values of the order-parameter mgnean-field model by Luijten and Bie[8] cannot be applied.
ment ratios at the critical point. Several years ago,zBre ~ That both the Ising model and the nonequilibrium and
and zinn-JustinBJ) calculated these quantities using field- structureless urn model have the same moment ratios is a
theory method$5]. Only recently are numerical simulations manifestation of a strong universality above the upper criti-
for thed=5 model able to confirm these theoretical predic-cal dimension: at the critical point, not only the lattice struc-
tions [6]. Some other properties of the Ising model aboveture, but the lattice itself becomes irrelevant. Moreover, a
critical dimension are still poorly explained by existing theo- Nonequilibrium nature of this model seems to be relevant as
ries. For example, the theoretically predicted leading correcthe model exhibits essentially the same type of criticality as
tions to the susceptibility disagree even up to the sign witrfequilibrium (mean-field models[10]. What really matters is
numerical simulation§4]. the type of symmetry that is broken and, since in both cases

In addition to direct simulations of the nearest-neighborit is the sameZ, symmetry, the equality of moment ratios
Ising model, there are also some other ways to study théllows.
critical point of the Ising model above critical dimension. ~ Our urn model was motivated by recent experiments on
For example, Luijten and Bte used the model witd<3,  the compartmentalization of shaken saad]. In this paper,
but with long-range interactiod]. Using such an approach, We are not concerned with the relation with granular matter,
they confirmed with good accuracy the BJ predictions for theand a more detailed justification of rules of the urn model is
moment ratios. As a particular case of a long-range modePmitted[9]. The model is defined as followst particles are
Luijten and Blde studied a model with extremely long-range distributed between two urns A and B, and the number of
interactions(the same for all pairs of sping8]. For this particles in each urn is denoted & and N—M, respec-
mean-field model, they were able to analytically derive thetively. Particles in a given ur(say A are subject to thermal
moment ratios as well as leading finite-size corrections. ~ fluctuations, and the temperatufef the urn depends on the

In this paper, we propose yet another approach to th&umber of particles in it as
problem of moment ratios above critical dimension. Namely,
we calculate order-parameter moment ratios of the fourth and T(x)=To+A(1=x), (1)
sixth order at the critical point of a recently introduced non-
equilibrium urn model[9]. Albeit structureless, this model wherex is a fraction of a total number of particles in a given
exhibits a mean-field Ising-type symmetry breaking. Alongurn andT, andA are positive constantgéi-or urns A and B,
an exactly located critical line, the obtained values are ik=M/N and (N—M)/N, respectively. Next, we define dy-
very good agreement with values predicted by BJ. Let usiamics of the modd9]: (i) one of theN particles is selected
notice that our calculationgi) are not affected by the inac- randomly; andii) with probability exd—1[T(x) ]}, wherex
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is the fraction of particles in the urn of a selected patrticle, the
selected particle changes urns.

To measure the difference in the occupancy of the urns,
we define

_ 2M—N B M 1 )
TN TN 2 @ &
In the steady state, the flux of particles changing their posi- 18 R — 1
tions from A to B equals the flux from B to A. Since the T

selected particles are uncorrelated, the above requiremer L7 T -3
can be written as

16 : : : :
-1 -1 0 0.002 0.004 0.006 0.008 0.01
M)expg =————=|=(N-M)exp =————5 (. IN
(M) F{T«M/N»} (N=M) ”I’T[«N—M)/Nﬂ]
(3) FIG. 1. The moment ratio of the fourth ordes(N) as a func-
tion of 1N for (from top A=0.125, 0.25, 0.5, ané (tricritical
or, equivalently, point). Arrows indicate the BJ results for the critical and the tric-
ritical point.
1 -1 1 -1
§+<E> ex 1— = §—<€> ex 1— . 1
1 2 pOt+1)==p(1hw(1)+p(0H[1-w(N)],
T 2+<e> T(2 (e}) N

4 1

@ P(N,t+1)=GP(N=1Ha(1)+p(N,O[1-w(N)],
Analysis of Eq.(4) shows[9] that on the (,T,) phase dia- (6)
gram, symmetric §=0) and asymmetric {#0) solutions

are separated by the critical line, which is given by the fol-where

lowing equation:

-1
M)=exg =—————|.
To=VA2— A2, 0<A<2Z. (5) w(M) eXD[T(I\/I/NJ

Supplementing the above equations with initial conditions,
one can easily solve them numerically.
Moment ratios that we calculate are defined as

The critical lines terminate at the tricritical pointA
=2/3T,=(y/3—1)/3. Let usnotice that a random selection
of particles basically implies the mean-field nature of this
model. Consequently, at the critical poidt=1/2 andy~1 (e (€%
(measured from the divergence of the variance of the order X4= 7>, =
parameter, which are ordinary equilibrium mean-field expo- (%) (%)
nents. However, the calculation of the dynamical expoaent
givesz=0.50 (1)[9] while the mean-field value for noncon- where
servative Ising systems is 2. We do not have convincing ar- N
guments that would explain such a small value.d?resum- ("= 2 (M_ E
ably, this fact might be related to a structureless nature of our M=o \N 2
model.
Defining p(M,t) as the probability that in a given urn and the symbol of infinity indicates that we take the long-
(say A at the timet there areM particles, the evolution of time (steady-stafesolutions of the master equati¢). Cal-
the model is described by the following master equation: culations are made fak = 1/8,1/4,1/2, and 2/3, and for each
A the value ofT, is calculated from Eq(5). Thus, the last
~M+1 point is the tricritical point and the remaining ones are criti-
Tp( M—-1t)o(N—M+1) cal points. Numerical results fod=100,200. . . ,51 200 are
presented in Figs. 1-4.
+1 Before discussing our results further, let us briefly de-
+— P(M+1He(M+1)+p(M,1) scribe the BJ approach. To calculate moment ratios above the
critical dimension they used the Ginzburg-Landau-Wilson
M N—M model. Then, they calculate the effective action restricting
Xig—eM ]+ ——[1-o(N=M)] the expansion only to the homogeneous contributitihe
lowest-mode approximation Since at criticality, the qua-
for M=1,2...N-1 dratic (in the order parameteterm vanishes in such an ex-

(7

6=

n

P(M, ), ®

p(M,t+1)=
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FIG. 2. The same as in Fig. 1 but fg(N). FIG. 4. Logarithmic plot ofx,(BJ)—x,(N) (+) and xg(BJ)

xs(N) (X) as a function folN for A= Z (tricritical point). Dotted

pansion and the leading term is quartic, which implies that;traight lines have a slope of 1/3

the probability distribution has the forp(x)~e‘x4, wherex
is a rescaled order parameter. Calculations of moments for we can easily extend the BJ approach to the tricritical
such a distribution are then elementary and one obtains  point at least in the lowest-mode approximation. At such a

4 point, the quartic term also vanishes, which makes the sixth-
oot F(l ~9 188 40 order term the leading one and the probability distribution
* g2 4 ’ take the formp(x)~e*"6. Simple calculations for such a

distribution yield
3 1)1
xezp r Z) ~6.5653D. .. . 9) . 5 . 1 . 1\3
m 6" \6 6

The fact that one can restrict the expansion of the free energy 4~ 1 =2 Xe= 13 ~.1621B. ...
to the lowest-order term is by no means obvip8k Such a F(i) GF(E)

restriction leads to the correct results only above the upper
critical dimension, where the model behaves according to the
mean-field scenario and fluctuations play a negligible roleThe BJ result$9),(10) are indicated by small arrows in Figs.
Ford<d,, additional terms in the expansion are also impor-1,2. Even without any extrapolation, one can see, especially
tant and these ratios take different values. Numerical confirfor critical points, a good agreement with our results. Data in
mation of the above results requires extensive Monte Carléigs. 1,2 shows strong finite-size corrections. To have better
simulations, and a satisfactory confirmation was obtaineestimations of asymptotic values in the linNt—o, we as-

(10

only for x, [6,12]. sume finite-size corrections of the form
1 . . . . : Xa6(N)=X4 () + AN~ (11)
05 L | The least-squares fitting of our finité-data to Eq(11) gives
o e X46(°), which agree with BJ value®),(10) within the ac-
2 ol % X l curacy better than 0.1%a comparable accuracy was
5 e achieved in the Monte Carlo simulations of the equilibrium
5 05 [ e | mean field by Luijten and Ble [8]). A better estimation of
° M - the correction exponend is obtained assuming thaj, ¢ )
& e * are given by the BJ values. The exponenthen equals the
g 1T | slope of the data in the logarithmic scale as presented in
R Figs. 3,4. Our data shows that for the critiglicritical)
LSy T ] point w=(1/2)(1/3).
Let us notice that leading finite-size corrections to the
2 ) 2'5 3 3'5 A't 4'5 P moment ratios in the equilibrium mean-field model are also

log. o) of the formN™~ % (with N being the number of sping8]. On
the other hand, in thed=5 Ising model the corrections are
FIG. 3. Logarithmic plot ofx,(BJ)—x4(N) (+) andxg(BJ)  much stronger and the leading term is of the fokm®?,
—x(N) (X) as a function foN for A=0.5. Dotted straight lines WhereL is the linear system siZ&]. Moreover, for the tric-
have a slope of 0.5. ritical point, except fod<d., the probability distribution is
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known to exhibit a three-peak structyrE3], which is differ-  state probability distribution can be calculated exactly in the

ent than the single-peak forp(x)~e*x6_ continuum Iimitzof the master equation, and the result has the
In summary, we calculated order-parameter moment ratioform p(x)~e *", wherex is now proportional to the differ-

of the fourth and sixth order at the critical and tricritical ence of occupancy [15]. In the Ehrenfest model there is no

points in an urn model that undergoes a symmetry breakingritical point and we expect that a distribution of the type

transition. Our results confirm that, as predicted byzBre e~x* might characterize our model, but off the critical liie

and Z|nn'JUSt|n, the critical probablllty dIStrIE)utIOI’]S of the the symmetric pha$eWe hope that when suitab'y extended,

rescaled order parameter has the f@(r) ~e * . Similarly,  an analytic approach to our model might extract critical and

for the tricritical point our results suggest tfp(t)()~e_"6. tricritical distributions as well. Such an approach is left as a
Although in our opinion convincing, the results are ob- future problem.

tained using numerical methods. It would be desirable to

have analytical arguments for the generation of such prob-

ability distributions. It seems that for the presented urn

model this might be easier than for tlinite dimensional This work was partially supported by the Swiss National

Ising-type models. Let us notice that for the simplest urnScience Foundation and the project OFES 00-0578 “COSYC

model, which was introduced by Ehrenf¢&t], the steady- OF SENS.”
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