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Moment ratios for an urn model of sand compartmentalization
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Numerically solving a master equation for a recently introduced nonequilibrium urn model of sand com-
partmentalization, we show that the order-parameter moment ratios of the fourth and sixth order remain
constant along an exactly located line of critical points. Obtained values are in very good agreement with
values predicted by Bre´zin and Zinn-Justin for the equilibrium Ising model above the critical dimension. At the
tricritical point, these ratios acquire values that also agree with a suitably extended Bre´zin and Zinn-Justin
approach.
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The concept of universality and scale invariance play
fundamental role in the theory of critical phenomena@1#. It is
well known that at criticality the system is characterized
critical exponents. Calculation of these exponents for the
mension of the systemd lower than the so-called critica
dimensiondc is a highly nontrivial task@2#. On the other
hand, ford.dc , the behavior of a given system is muc
simpler, and critical exponents take mean-field values
are usually simple fractional numbers.

However, not everything is clearly understood above
critical dimension. One example is the Ising model (dc54),
where, despite intensive research, discrepancies betw
analytical@3# and numerical@4# calculations still persist. Of
particular interest are the values of the order-parameter
ment ratios at the critical point. Several years ago, Bre´zin
and Zinn-Justin~BJ! calculated these quantities using fiel
theory methods@5#. Only recently are numerical simulation
for the d55 model able to confirm these theoretical pred
tions @6#. Some other properties of the Ising model abo
critical dimension are still poorly explained by existing the
ries. For example, the theoretically predicted leading corr
tions to the susceptibility disagree even up to the sign w
numerical simulations@4#.

In addition to direct simulations of the nearest-neighb
Ising model, there are also some other ways to study
critical point of the Ising model above critical dimensio
For example, Luijten and Blo¨te used the model withd<3,
but with long-range interactions@7#. Using such an approach
they confirmed with good accuracy the BJ predictions for
moment ratios. As a particular case of a long-range mo
Luijten and Blöte studied a model with extremely long-rang
interactions~the same for all pairs of spins! @8#. For this
mean-field model, they were able to analytically derive
moment ratios as well as leading finite-size corrections.

In this paper, we propose yet another approach to
problem of moment ratios above critical dimension. Name
we calculate order-parameter moment ratios of the fourth
sixth order at the critical point of a recently introduced no
equilibrium urn model@9#. Albeit structureless, this mode
exhibits a mean-field Ising-type symmetry breaking. Alo
an exactly located critical line, the obtained values are
very good agreement with values predicted by BJ. Let
notice that our calculations:~i! are not affected by the inac
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curacy of the location of the critical point, which is a serio
problem in the case of the Ising model;~ii ! are based on the
numerical solution of a discrete master equation; and~iii ! are
not affected by stochastic fluctuations, as in Monte Ca
simulations. Moreover, we calculate these ratios at the t
ritical point, which is also present in our model, and sho
that the obtained values are also in agreement with suita
extended calculations of BJ. Our urn model is defined
dynamical mean-field-like rules. Although some steady-st
characteristics of this model can be found exactly, their pr
ability distributions, contrary to equilibrium systems, are u
known and can only be determined numerically. Con
quently, the canonical formalism used in the equilibriu
mean-field model by Luijten and Blo¨te @8# cannot be applied.

That both the Ising model and the nonequilibrium a
structureless urn model have the same moment ratios
manifestation of a strong universality above the upper cr
cal dimension: at the critical point, not only the lattice stru
ture, but the lattice itself becomes irrelevant. Moreover
nonequilibrium nature of this model seems to be relevan
the model exhibits essentially the same type of criticality
equilibrium ~mean-field! models@10#. What really matters is
the type of symmetry that is broken and, since in both ca
it is the sameZ2 symmetry, the equality of moment ratio
follows.

Our urn model was motivated by recent experiments
the compartmentalization of shaken sand@11#. In this paper,
we are not concerned with the relation with granular mat
and a more detailed justification of rules of the urn mode
omitted@9#. The model is defined as follows:N particles are
distributed between two urns A and B, and the number
particles in each urn is denoted asM and N2M , respec-
tively. Particles in a given urn~say A! are subject to therma
fluctuations, and the temperatureT of the urn depends on th
number of particles in it as

T~x!5T01D~12x!, ~1!

wherex is a fraction of a total number of particles in a give
urn andT0 andD are positive constants.~For urns A and B,
x5M /N and (N2M )/N, respectively.! Next, we define dy-
namics of the model@9#: ~i! one of theN particles is selected
randomly; and~ii ! with probability exp$21/@T(x)#%, wherex
©2002 The American Physical Society18-1
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is the fraction of particles in the urn of a selected particle,
selected particle changes urns.

To measure the difference in the occupancy of the u
we define

e5
2M2N

2N
5

M

N
2

1

2
. ~2!

In the steady state, the flux of particles changing their po
tions from A to B equals the flux from B to A. Since th
selected particles are uncorrelated, the above requirem
can be written as

^M &expF 21

T~^M /N&!G5^N2M &expH 21

T@^~N2M !/N&#J ,

~3!

or, equivalently,

S 1

2
1^e& DexpF 21

TS 1

2
1^e& D G5S 1

2
2^e& DexpF 21

TS 1

2
2^e& D G .

~4!

Analysis of Eq.~4! shows@9# that on the (D,T0) phase dia-
gram, symmetric (e50) and asymmetric (eÞ0) solutions
are separated by the critical line, which is given by the f
lowing equation:

T05AD/22D/2, 0,D, 2
3 . ~5!

The critical lines terminate at the tricritical point:D
52/3,T05(A321)/3. Let usnotice that a random selectio
of particles basically implies the mean-field nature of t
model. Consequently, at the critical pointb51/2 andg'1
~measured from the divergence of the variance of the o
parameter!, which are ordinary equilibrium mean-field expo
nents. However, the calculation of the dynamical exponez
givesz50.50 (1)@9# while the mean-field value for noncon
servative Ising systems is 2. We do not have convincing
guments that would explain such a small value ofz. Presum-
ably, this fact might be related to a structureless nature of
model.

Defining p(M ,t) as the probability that in a given ur
~say A! at the timet there areM particles, the evolution of
the model is described by the following master equation:

p~M ,t11!5
N2M11

N
p~M21,t !v~N2M11!

1
M11

N
p~M11,t !v~M11!1p~M ,t !

3H M

N
@12v~M !#1

N2M

N
@12v~N2M !#J

for M51,2 . . .N21
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p~0,t11!5
1

N
p~1,t !v~1!1p~0,t !@12v~N!#,

p~N,t11!5
1

N
p~N21,t !v~1!1p~N,t !@12v~N!#,

~6!

where

v~M !5expF 21

T~M /N!G .
Supplementing the above equations with initial conditio
one can easily solve them numerically.

Moment ratios that we calculate are defined as

x45
^e4&

^e2&2
, x65

^e6&

^e2&3
, ~7!

where

^en&5 (
M50

N S M

N
2

1

2D n

p~M ,`!, ~8!

and the symbol of infinity indicates that we take the lon
time ~steady-state! solutions of the master equation~6!. Cal-
culations are made forD51/8,1/4,1/2, and 2/3, and for eac
D the value ofT0 is calculated from Eq.~5!. Thus, the last
point is the tricritical point and the remaining ones are cr
cal points. Numerical results forN5100,200, . . . ,51 200 are
presented in Figs. 1–4.

Before discussing our results further, let us briefly d
scribe the BJ approach. To calculate moment ratios above
critical dimension they used the Ginzburg-Landau-Wils
model. Then, they calculate the effective action restrict
the expansion only to the homogeneous contributions~the
lowest-mode approximation!. Since at criticality, the qua-
dratic ~in the order parameter! term vanishes in such an ex

FIG. 1. The moment ratio of the fourth orderx4(N) as a func-
tion of 1/N for ~from top! D50.125, 0.25, 0.5, and23 ~tricritical
point!. Arrows indicate the BJ results for the critical and the tri
ritical point.
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pansion and the leading term is quartic, which implies t
the probability distribution has the formp(x);e2x4

, wherex
is a rescaled order parameter. Calculations of moments
such a distribution are then elementary and one obtains

x45
1

8p2 FGS 1

4D G4

'2.188 440 . . . ,

x65
3

8p2 FGS 1

4D G4

'6.565 319 . . . . ~9!

The fact that one can restrict the expansion of the free en
to the lowest-order term is by no means obvious@3#. Such a
restriction leads to the correct results only above the up
critical dimension, where the model behaves according to
mean-field scenario and fluctuations play a negligible ro
For d,dc , additional terms in the expansion are also imp
tant and these ratios take different values. Numerical con
mation of the above results requires extensive Monte C
simulations, and a satisfactory confirmation was obtain
only for x4 @6,12#.

FIG. 2. The same as in Fig. 1 but forx6(N).

FIG. 3. Logarithmic plot ofx4(BJ)2x4(N) ~1! and x6(BJ)
2x6(N) (3) as a function forN for D50.5. Dotted straight lines
have a slope of 0.5.
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We can easily extend the BJ approach to the tricriti
point at least in the lowest-mode approximation. At such
point, the quartic term also vanishes, which makes the si
order term the leading one and the probability distributi
take the formp(x);e2x6

. Simple calculations for such a
distribution yield

x45

GS 5

6DGS 1

6D
GS 1

2D 2 52, x65

GS 1

6D 3

6GS 1

2D 3 '5.162 113 . . . .

~10!

The BJ results~9!,~10! are indicated by small arrows in Figs
1,2. Even without any extrapolation, one can see, espec
for critical points, a good agreement with our results. Data
Figs. 1,2 shows strong finite-size corrections. To have be
estimations of asymptotic values in the limitN→`, we as-
sume finite-size corrections of the form

x4,6~N!5x4,6~`!1AN2v. ~11!

The least-squares fitting of our finite-N data to Eq.~11! gives
x4,6(`), which agree with BJ values~9!,~10! within the ac-
curacy better than 0.1%~a comparable accuracy wa
achieved in the Monte Carlo simulations of the equilibriu
mean field by Luijten and Blo¨te @8#!. A better estimation of
the correction exponentv is obtained assuming thatx4,6(`)
are given by the BJ values. The exponentv then equals the
slope of the data in the logarithmic scale as presented
Figs. 3,4. Our data shows that for the critical~tricritical!
point v5(1/2)(1/3).

Let us notice that leading finite-size corrections to t
moment ratios in the equilibrium mean-field model are a
of the formN20.5 ~with N being the number of spins! @8#. On
the other hand, in thed55 Ising model the corrections ar
much stronger and the leading term is of the formL20.5,
whereL is the linear system size@7#. Moreover, for the tric-
ritical point, except ford,dc , the probability distribution is

FIG. 4. Logarithmic plot ofx4(BJ)2x4(N) ~1! and x6(BJ)
2x6(N) (3) as a function forN for D5

2
3 ~tricritical point!. Dotted

straight lines have a slope of 1/3.
8-3
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known to exhibit a three-peak structure@13#, which is differ-
ent than the single-peak formp(x);e2x6

.
In summary, we calculated order-parameter moment ra

of the fourth and sixth order at the critical and tricritic
points in an urn model that undergoes a symmetry break
transition. Our results confirm that, as predicted by Bre´zin
and Zinn-Justin, the critical probability distributions of th
rescaled order parameter has the formp(x);e2x4

. Similarly,
for the tricritical point our results suggest thatp(x);e2x6

.
Although in our opinion convincing, the results are o

tained using numerical methods. It would be desirable
have analytical arguments for the generation of such pr
ability distributions. It seems that for the presented u
model this might be easier than for the~finite dimensional!
Ising-type models. Let us notice that for the simplest u
model, which was introduced by Ehrenfest@14#, the steady-
s

01611
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g

o
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n

n

state probability distribution can be calculated exactly in
continuum limit of the master equation, and the result has
form p(x);e2x2

, wherex is now proportional to the differ-
ence of occupancye @15#. In the Ehrenfest model there is n
critical point and we expect that a distribution of the ty
e2x2

might characterize our model, but off the critical line~in
the symmetric phase!. We hope that when suitably extende
an analytic approach to our model might extract critical a
tricritical distributions as well. Such an approach is left as
future problem.
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